Evaluating Salinity Trends in the Delta Using Data from 1922-2012

Project Team: John Rath, Sujoy B. Roy, Limin Chen, Michael Ungs, and Miguel Guerrero, Tetra Tech Inc.

Technical Direction: Paul Hutton, Metropolitan Water District of Southern California

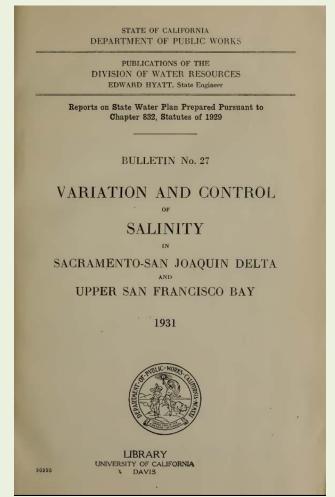
Funding: San Luis and Delta Mendota Water Authority and State Water Contractors

Additional Support: Joey Zhou, Tara Smith, and Eli Ateljevic, Department of Water Resources

Presentation to the DSM2 Users Group May 14, 2014

Overview

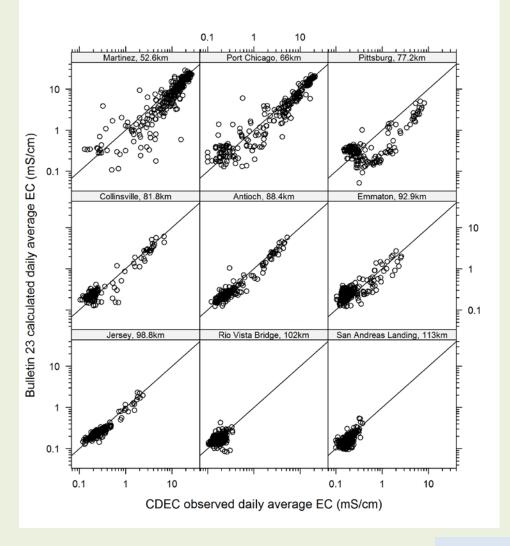
- Data sources
- DSM2 estimates in support of data adjustment
- Adjustment and cleaning to develop a daily average time series of salinity
- Trend evaluation by
 - Isohalines (X2 and other positions)
 - Stations along the salinity gradient
- Use of these data to inform modeling

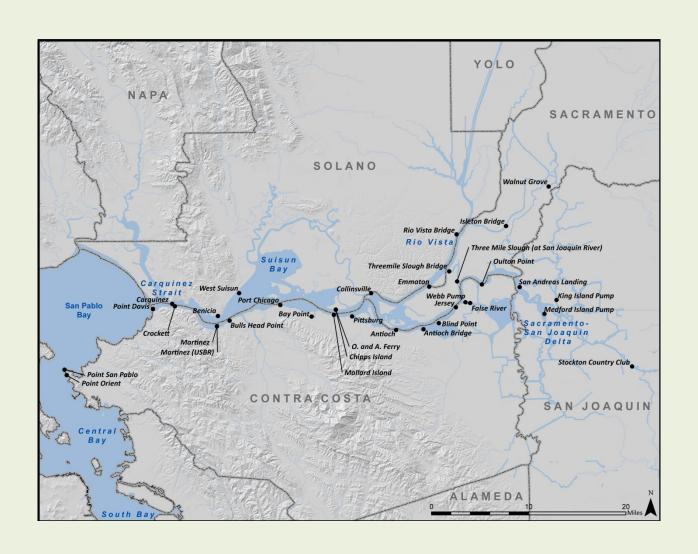

Data Sources

- DWR bulletins with grab sample chloride data, spanning 1922 to 1971 (referred to as Bulletin 23)
- CDEC measurements of salinity as electrical conductivity, reported sub-daily, 1964-2012
- Goal: integrate both data sources and develop a continuous daily time series of salinity across multiple stations in the western Delta

DWR Bulletin Data

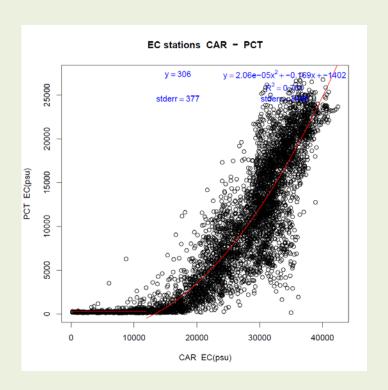
- Manually transcribe chloride/chlorinity data from selected bulletins (scanned paper copies)
- Convert to georeferenced Access database
- Measurements usually at higher high tide (HHT), but not always
- Need to convert to daily average values


		Salinity in parts of chlorine per 100,000 parts of water														
Month	Station	Day of month														
		2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
pril	Carquinez Strait Vallejo Junction'. Benicia'. Martinez'					480 180 230			420 530		30	*240 *120				570 300 250
fay	100000000000000000000000000000000000000				150 300	120	400		400		*420 150	330			*390	120 160
une	Carquinez Strait and Sulsun Bay Vallejo Junction ¹ . Benicia ¹ . Martines ² . O. and A. Ferry. O. and A. Bridge.	5	*4			*490 *410 240		11	*14	*850 *500	420 11	48) 26 6	*750	37 34	*71 37	610 610
	Sacramente River Delta Collinsville Emmaton Three Mile Slough Ferry	4	5 4 5	*4	12 25	*†4	*†3	*3	*4	*5 *4	4 6	*5	*5	3 4	. 7 6 *4	*10 *4 3
	San Joaquin River Delta Antioch. Sherman Island Ferry Jersey. East Contra Costa Irrigation Com-	*4 6 5	*4 6	*6 4	*5 *5 7	*5		3 4 †5	3 4 *3	4 4	*5 6	6	5 *3	*7 5	10 4	4

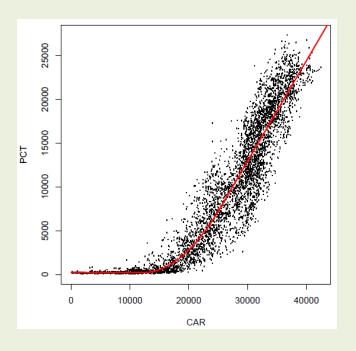

Correction for Higher High Tide (HHT) Salinity

- DSM2 was run over 1922 to 1976 (Acknowledgement: Joey Zhou and Tara Smith, DWR)
- Daily values of ratio of EC at HHT to average EC were computed
- Observed grab sample data corrected using ratios obtained from DSM2
- The approach can be validated over 1964-1971 when both Bulletin 23 and CDEC data are available
- The DSM2 method was as good as or better than other competing methods and was used because of it ability to represent conditions beyond the validation period.

Comparison of Daily Averaging

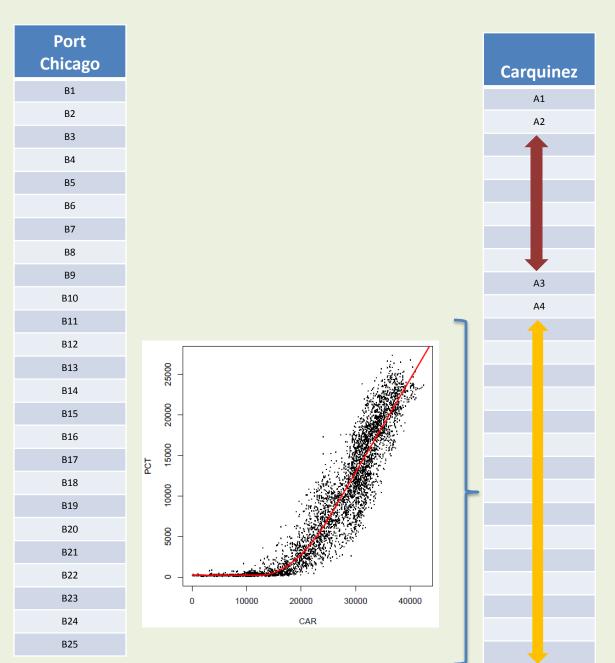


Combination of Bulletin 23 and CDEC Stations Used in Analysis



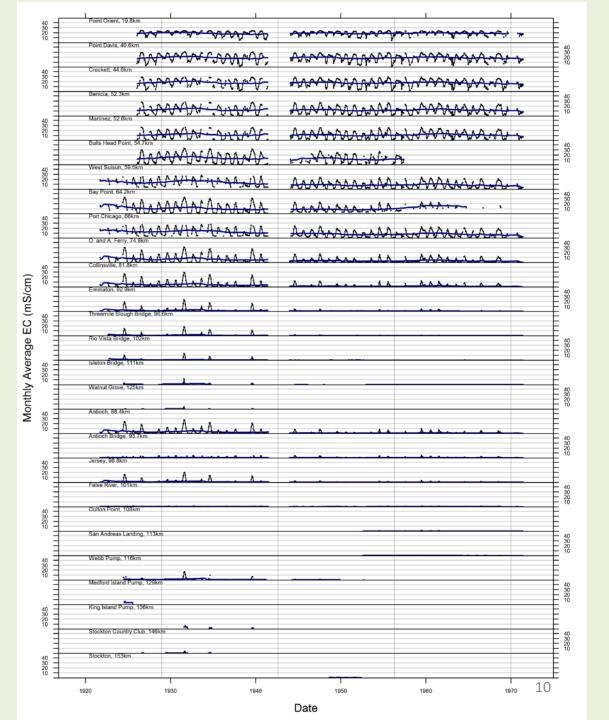
CDEC Data Cleaning Example

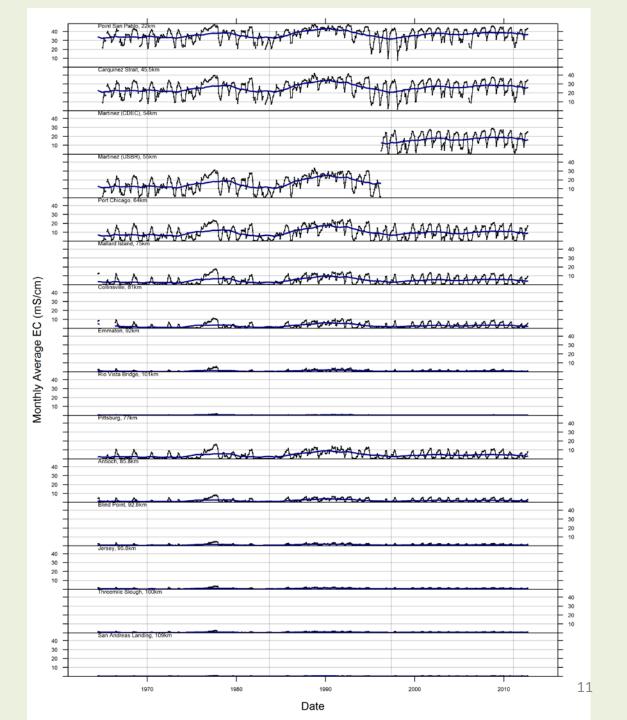
(Additional Support for this Task: Joey Zhou and Tara Smith, DWR)



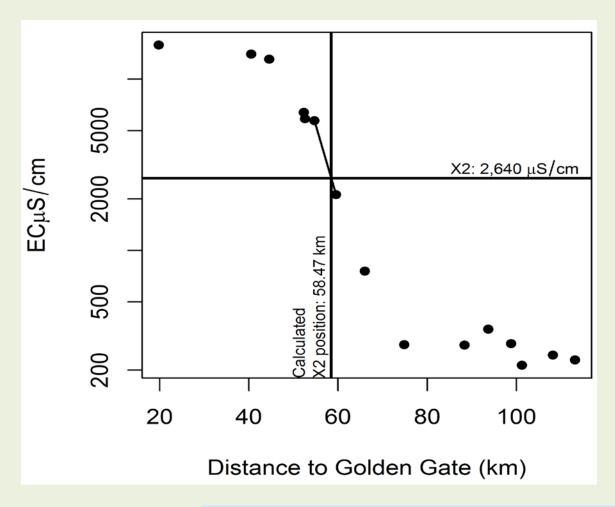
Original Data

Cleaned Data

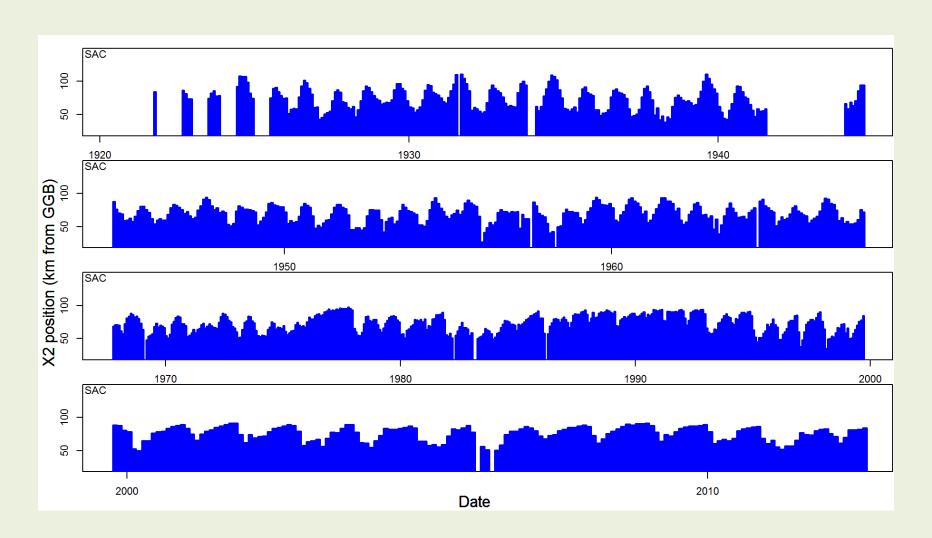

Data Filling Example


Linear interpolation

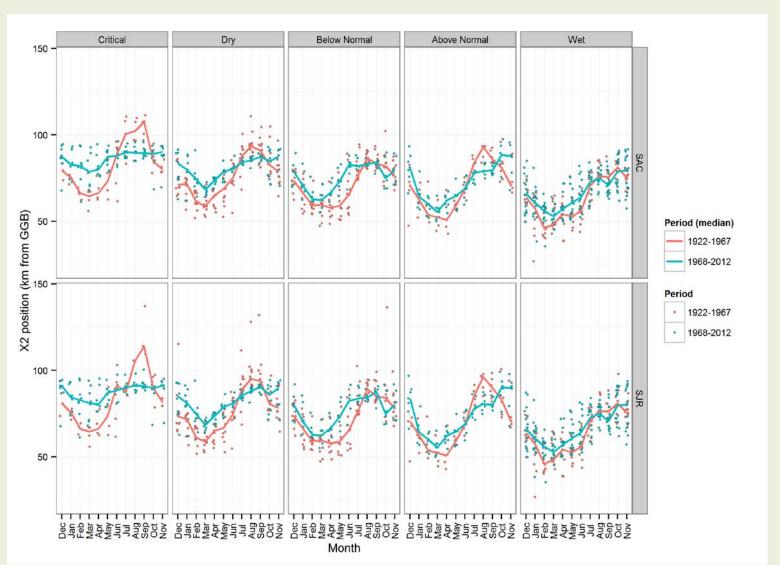
Neighbor filling


Bulletin 23 Data (Cleaned and Filled)

CDEC Data (Cleaned and Filled)



Isohalines Positions Interpolated from Station Data



Use log EC-linear distance between bounding stations to compute isohalines. X2 (2,640 μ s/cm) is shown here.

X2 Over Time (Sacramento River)

X2 By Month and Water Year

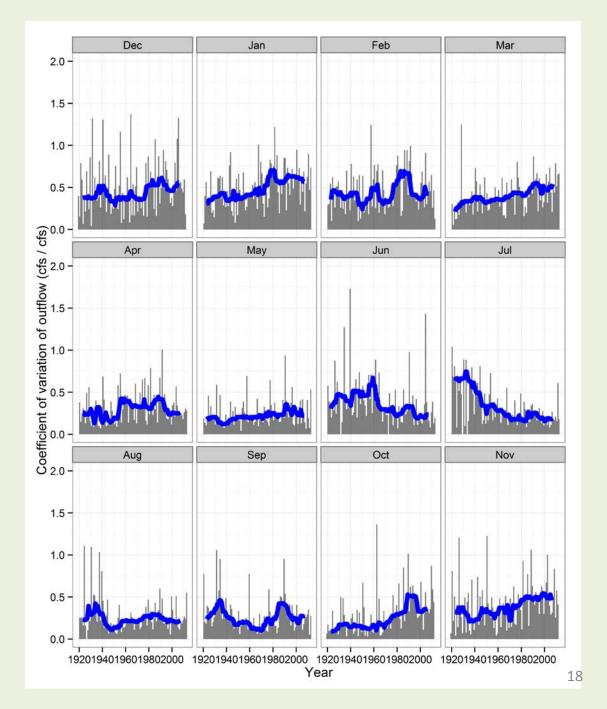
Evaluation of Trends by Station EC and by Isohaline Position (Example: WY 1922-2012)

 $\mathsf{W} \longleftarrow \mathsf{E}$

Month	Martinez	Mallard Is	Collinsville	Antioch	Jersey Point	SAC-X2	SJR-X2
Dec	↑	↑	↑	↑	\leftrightarrow	↑	↑
Jan	↑	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	↑
Feb	↑	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	↑
Mar	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\	↑	↑
Apr	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\	↑	↑
May	↑	↑	\leftrightarrow	\leftrightarrow	\	↑	↑
Jun	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\	↑	\leftrightarrow
Jul	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Aug	\leftrightarrow	\	\	\	\	\downarrow	\
Sep	↑	\	\	\	\	\downarrow	\
Oct	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Nov	↑	↑	↑	↑	\leftrightarrow	↑	↑
All	↑	↑	\leftrightarrow	\leftrightarrow	\	↑	↑

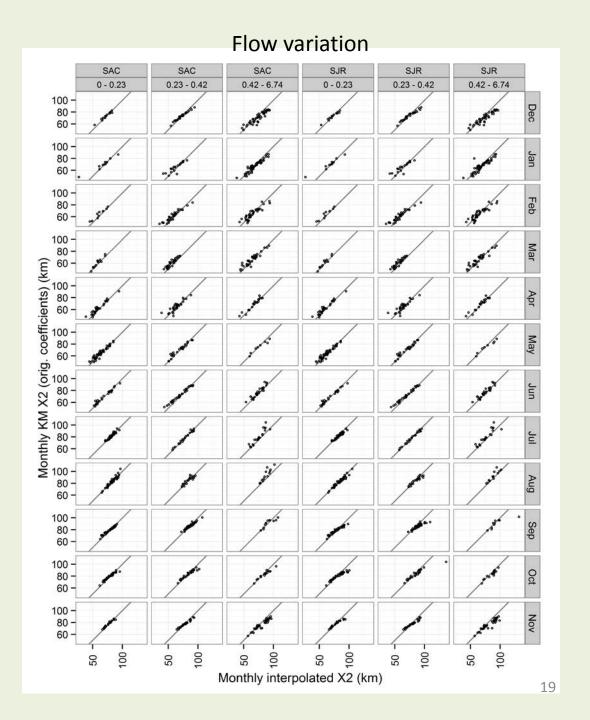
15

Use of Interpolated X2 to Inform Model Development

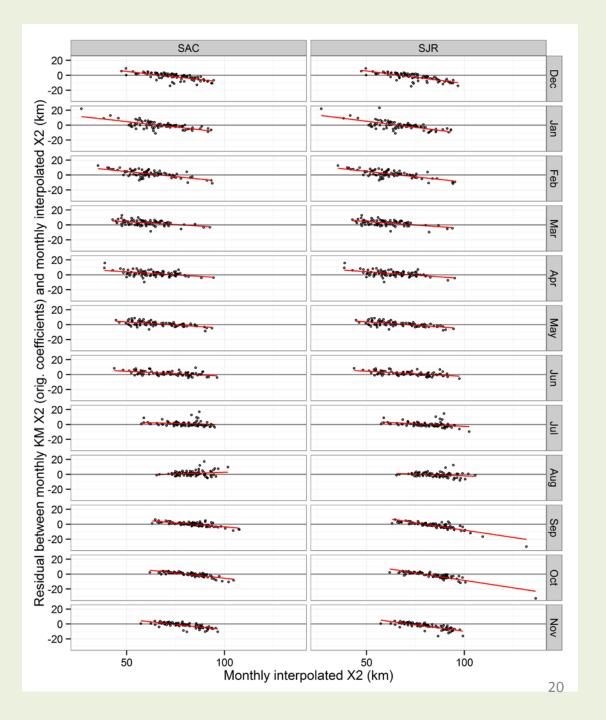

- A clean long-term salinity dataset is a good resource for improving existing models
- For example, the K-M model is based on data from 1967-1991:
 - -X2(t) = 122.2 + 0.328*X2(t-1) -17.6 log(Qout(t))
- We can compare model performance with K-M model or recalibrate parameters

K-M Model Recalibration

 $X2(t) = A + B X2(t-1) - C log(Q_{out}(t))$


River	Period of Regression	r²	Standard Error of Regression (km)	A	В	С
SAC	10/01/1921 to 09/01/2012	0.930	3.51	114. +/- 1.80	0.418 +/- 0.0106	-17.3 +/- 0.291
SAC	10/01/1921 to 06/01/1964	0.923	3.95	112. +/- 2.65	0.432 +/- 0.0158	-17.2 +/- 0.439
SAC	07/01/1971 to 09/01/2012	0.939	3.07	119. +/- 2.63	0.392 +/- 0.0153	-17.9 +/- 0.418
SAC	10/01/1967 to 11/01/1991 (K-M period)	0.948	2.79	110. +/- 3.36	0.419 +/- 0.0198	-16.2 +/- 0.517
	Original Published Model			122.2	0.328	-17.6

Coefficient of Variation of Delta Outflow*



^{*}Standard deviation divided by the mean of daily flows in a month

Effect of Flow Variation on K-M Model Performance

K-M Model Residuals

Summary

- This effort makes long-term salinity data collected over the past 9 decades amenable to analysis
- Cleaning the data was an extensive effort, and was needed for both the Bulletin 23 and CDEC datasets
- Can use this dataset to evaluate trends over specific types of flow conditions and also to calibrate and improve models
- In addition to the K-M model work shown here, this data set is being used for the development of a generalized salinity gradient model and artificial neural network models of salinity in the western Delta